THE HIGGS MASS BOUND IN GAUGE EXTENSIONS OF THE MSSM

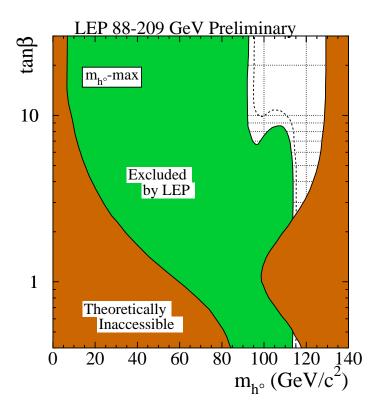
A. DELGADO

Argonne Theory Institute, May 2004

Outline

- INTRODUCTION: The fine-tunning problem in the MSSM
- WARM UP- $U(1)_x$: Greater Higgs mass
- AN EXTRA SU(2): Asymptotic freedom
- CONCLUSIONS AND OUTLOOK

Based on work done in collaboration with:


P. Batra, D.E. Kaplan and T.M.P. Tait

JHEP **0402**, 043 (2004)

INTRODUCTION

- The MSSM has been the most promising candidate for beyond SM for the last 20 years because:
 - Gives a solution to the hierarchy problem. Softens the sensitivity to high scales in the Higgs mass.
 - Can naturally accommodate unification.
 - has a natural candidate for dark matter. LSP.
- Although it has a number of problems:
 - Large number of parameters O(100). This is much larger than the 19 of the SM.
 - SUSY breaking and flavour. There is no unique way to break SUSY without any additional problems.
 - \bullet μ -problem. The Higgs mass term in the superpotential has to be \sim EW.

But clearly the MSSM is being experimentally constrained by the Higgs mass

ullet In order for the MSSM not to be ruled out it has to be fine-tunned, $M_{SUSY}>$ EW so there must be cancellations at the level of few percent.

- This fine-tunning is caused by the dual role played by the superpartners in general and the stops specifically:
 - ullet On the one hand stops cancel the quadratic divergence of the Higgs coming from top loops. But SUSY breaking leaves quadratic sensitivity to the stop mass. $\longrightarrow M_{stop} \sim {\sf EW}$
 - ullet On the other hand the experimental bound can only be satisfied for large values of the stop parameters ($\sim 1~\text{TeV}$). This is because the tree-level mass is fixed by SUSY

$$m_h^2 \leq m_z^2$$

• There are ways to increase the previous tree level values via superpotential couplings, NMSSM or through the D-term. In this talk I am going to talk about the later case.

WARM UP- $U(1)_x$

ullet The gauge structure of the MSSM is enlarged with an extra U(1):

$$Q, L$$
 : 0
 D^c, E^c, \overline{H} : $+1/2$
 U^c, H, N^c : $-1/2$
 Φ, Φ^c : $\pm q$

With this structure the D-term reads as:

$$\frac{g_x^2}{2} \left[\frac{1}{2} |\overline{H}|^2 - \frac{1}{2} |H|^2 + q |\phi|^2 - q |\phi^c|^2 + \dots \right]^2$$

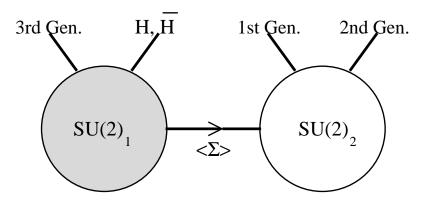
ullet We are going to suppose that SUSY breaking occurs at a similar scale of the breaking of the U(1).

ullet Bellow the scale where U(1) is broken the field ϕ gets a soft mass and it can be integrated out leading to the following non-susy term:

$$\frac{g_x^2}{2} \left(\frac{1}{2} \left| \overline{H} \right|^2 - \frac{1}{2} \left| H \right|^2 \right)^2 \times \left(1 + \frac{M_{Z'}^2}{2m_\phi^2} \right)^{-1}$$

 Which translates into the following tree-level bound for the Higgs mass upon EW breaking:

$$m_{h^0}^2 < \left(\frac{g^2}{2} + \frac{g'^2}{2} + \frac{g_x^2}{2} \left(1 + \frac{M_{Z'}^2}{2m_\phi^2}\right)^{-1}\right) v^2 \cos^2 2\beta$$


- There are certain constrains on the parameters coming from EW observables and perturbativity. So taking the following parameters:
 - $\alpha_x\equiv g_x^2/4\pi=1/35$ at a few TeV. The beta-function coefficient for the gauge coupling g_x is $b_x=7+2q^2$. For the value q=1/2, the coupling runs semi-perturbatively at the GUT scale (i.e., $\alpha_x(\Lambda_{GUT})\sim 1$).
 - $\bullet\,$ A Z' mass of 2.2 TeV, just above the current LEP lower bound.
 - $m_\phi=6.6$ TeV at low energies. One loop corrections to the Higgs mass parameter from the supersymmetry breaking are finite and relatively small (< 250 GeV). The two-loop RGE contribution from m_ϕ^2 is smaller.
- We get that in the decoupling limit (large $\tan \beta$ and m_A)

$$m_h = 116 \, \mathrm{GeV}$$

that value will be lifted by radiative corrections. So all the parameter space of this model is compatible LEP data.

AN EXTRA SU(2)

- ullet The reason why the effect in the previous model is limited is that the new U(1) is infrared free, so the natural value for g_x is very small at low energies. we am going to present a model with asymptotic freedom so the gain is much greater.
- Lets suppose that the gauge structure is now $SU(2)_1 \times SU(2)_2 \times U(1)_Y$ and the matter content is as follows:

- ullet There is a bidouplet Σ whose vev will break the two SU(2)'s to the diagonal $SU(2)_L$.
- $SU(2)_1$: The third family plus the two higgs doublets H, \overline{H} . (This group is asymptotically free!!)
- $SU(2)_2$: The first two families plus two extra higgs-like supermultiplets H', \overline{H}' .
- Yukawa couplings for the first two generations are generated via couplings to H', \overline{H}' and a superpotential couplings of the form $\lambda' \overline{H} \Sigma H'$.

$$W = \mu' H' \bar{H}' + \lambda' H_2 \Sigma H' +$$

$$y_u Q_1 u_1 H' + y_d Q_1 d_1 \bar{H}' + \dots$$

• If $\mu' \ge <\Sigma>$, we integrate out the spectator Higgses:

$$y_d \frac{\lambda' < \Sigma >}{\mu'} H_2 Q_1 u_1$$

ullet The D-term of the two SU(2)'s is:

$$\frac{g_1^2}{8} \left(\operatorname{Tr} \left[\Sigma^{\dagger} \sigma^a \Sigma \right] + H^{\dagger} \sigma^a H - \overline{H} \sigma^a \overline{H}^{\dagger} + \ldots \right)^2 + \frac{g_2^2}{8} \left(\operatorname{Tr} \left[\Sigma \sigma^a \Sigma^{\dagger} \right] \right)^2$$

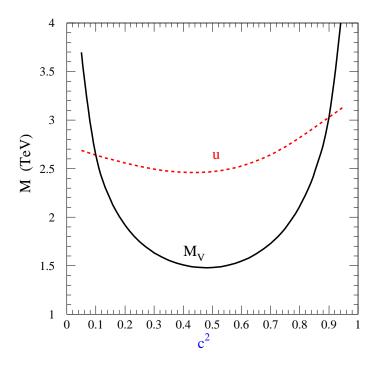
• On top of which we have the following potential for Σ :

$$V_{\Sigma} = \frac{1}{2}B\Sigma\Sigma + h.c. + m^{2}|\Sigma|^{2} + \frac{\lambda^{2}}{4}|\Sigma\Sigma|^{2}$$

• For sufficient large B Σ develops a vev, $\langle \Sigma \rangle = u \mathbf{1}$ and integrating out the massive fields we get the following potential for the Higgs fields:

$$\frac{g^2}{8} \Delta \left(H^{\dagger} \vec{\sigma} H - \overline{H} \vec{\sigma} \overline{H}^{\dagger} \right)^2 + \frac{g_Y^2}{8} \left(|\overline{H}|^2 - |H|^2 \right)^2,$$

In where:


$$\Delta = \frac{1 + \frac{2m^2}{u^2} \frac{1}{g_2^2}}{1 + \frac{2m^2}{u^2} \frac{1}{g_1^2 + g_2^2}} \quad \text{and} \quad \frac{1}{g^2} = \frac{1}{g_1^2} + \frac{1}{g_2^2}$$

Upon EWSB the tree-level Higgs mass satisfies:

$$m_{h^o}^2 < \frac{1}{2} \left(g^2 \Delta + g_Y^2 \right) v^2 \cos^2 2\beta$$

- As before parameters are chosen to satisfy both perturbativity and EW constrains:
 - ullet Oblique corrections to W and Z masses.
 - Vertex corrections to f_L .
 - Non-oblique contributions to G_F .
 - Small triplet VEV in Σ .
 - Non-universal corrections to 3rd family couplings!

ullet The bound can be parametrized in $c^2 \equiv \cos^2 \theta$ where $\tan \theta = g1/g2$

ullet The bound is minimize when the couplings have same size, although we are really interested when $g1\gg g2$ which pushes us to a bigger bound on the scales.

- Lets pick up some points in the parameter space:
 - $g_1(u)=1.80,\ g_2(u)=.70$, with $c^2=.8$ inspired by a GUT with $g_1(\Lambda_{GUT})=.97$. Additional spectator fields are included in the running to aid in unification.
 - u=2.7 TeV, above the lower limit from electroweak constraints, giving $M_{W'}, M_{Z'} \sim 2$ TeV.
 - $m=10~{
 m TeV}$. One-loop finite corrections to the Higgs mass parameter $<300~{
 m GeV}$ and two-loop RGE contributions are also under control.
- ullet For the above values we get $\Delta=6.97$ and $m_h=214$ GeV for the large aneta and decoupling limit.
- ullet One can push up $g_1(\Lambda_{GUT})$ ($c^2\sim .95$) paying the price of fine-tunning and one can get $\Delta\sim 20$ and $m_h\sim 350$ GeV.

Other interesting features of this model are:

- Since the top-yukawa gets an extra contribution from a big coupling, $\tan \beta < 1$ is consistent without a Landau pole.
- Unification is achieved to $SU(5) \times SU(5)$. Two extra triplets of $SU(2)_2$ are needed to ensure the proper running.
- First two families yukawas can be naturally suppressed if the extra H', \overline{H}' acquire masses above the breaking scale.
- Using the idea of complementarity we could let $SU(2)_1$ confine, the Higgs and third family will appear as composites, and the Higgs mass could get its maximum value.

CONCLUSIONS AND OUTLOOK

- The parameter space of the MSSM is starting to be squeezed because of the not-yet-found Higgs. Moreover, any scenario not ruled out is fine-tuned.
- We have constructed simple extensions that allow to raise the tree-level value of the Higgs mass via extra gauge groups or extra superpotential couplings.
- We have proven that there can be SUSY theories with a heavy Higgs contrary to the common lore.
- ullet One of the phenomenological properties of these models is allowing aneta < 1. The gauge extensions have a similar Higgs sector as in the MSSM and the minimization of the potential is as well equivalent.

- There are, however, some open questions:
 - Extended study of the phenomenology, specially the $\tan \beta < 1$ region.
 - Possible UV embedding of these models with a complete SUSY breaking sector.
 - Other possibilities such as the additions of triplets or confining groups.
- It is fair to say that there are easy ways to solve the fine-tunning problem of the MSSM regarding the higgs mass. It is not generally true that any SUSY model will predict a light higgs. On the other hand one can construct models where the LEP bound doesn't apply.